2. The fundamental theorem of calculus

The fundamental theorem provides us with a much-needed shortcut for computing definite integral, and makes much stronger statements about the relationship between differentiation and integration.

THEOREM.2.1 (Fundamental Theorem of Calculus, part I)
If $f(x)$ is continuous on $[a, b]$ and $F(x)$ is any antiderivative of $f(x)$,Then $\left.\int_{a}^{b} f(x) d x=F(x)\right]_{a}^{b}=F(b)-F(a)$

EX.2.1 (Using the Fundamental Theorem of Calculus, part I)

- $\left.\int_{0}^{2}\left(x^{2}-2 x\right) d x=\left(\frac{1}{3} x^{3}-x^{2}\right)\right]_{0}^{2}=\left(\frac{1}{3} .8-4\right)-0=\frac{-4}{3}$
- $\left.\int_{1}^{4}\left(\sqrt{x}-\frac{1}{x^{2}}\right) d x=\int_{1}^{4}\left(x^{\frac{1}{2}}-x^{-2}\right) d x=\left(\frac{2}{3} x^{\frac{3}{2}}+x^{-1}\right)\right]_{1}^{4}=\left(\frac{2}{3} \sqrt[2]{4^{3}}+\right.$ $\left.4^{-1}\right)-\left(\frac{2}{3}+1\right)=\frac{2}{3}(8)+\frac{1}{4}-\frac{5}{3}=\frac{11}{3}+\frac{1}{4}=\frac{47}{12}$
- A definite integral involving an Exponential function

$$
\left.\int_{0}^{4} e^{-2 x} d x=\left(\frac{1}{-2} e^{-2 x}\right)\right]_{0}^{4}=-\frac{1}{2} e^{-8}+\frac{1}{2} \approx 0.49983
$$

- A definite integral involving a Logarithm

$$
\begin{aligned}
\int_{-3}^{-1} \frac{2}{x} d x & \left.=2 \int_{-3}^{-1} \frac{1}{x} d x=2(\ln |x|)\right]_{-3}^{-1} \\
& =2[\ln |-1|-\ln |-3|]=2[\ln 1-\ln 3]=-2 \ln 3
\end{aligned}
$$

EX.2.2 (Computing Areas)

Find the area under curve $f(x)=\sin x$ on the interval $[0, \pi]$

Solution

Recall that if $f(x) \geq 0$ on $[a, b]$, Then the integral $\int_{a}^{b} f(x) d x$ gives the area under the curve.

$$
\text { Area }=\int_{a}^{b} f(x) d x
$$

since $f(x)=\sin x \geq 0$ and $\sin x$ is continuous on $[0, \pi]$, we have that Area $\left.=\int_{0}^{\pi} \sin x d x=-\cos x\right]_{0}^{\pi}=-[\cos \pi-\cos 0]=[-1-1]=2$

The following Theorem gives us the form when the upper limit in a definite integral is unspecified value x .

THEOREM.2.2 (Fundamental Theorem of Calculus, part II)
If $f(x)$ is continuous on $[a, b]$ and $G(x)=\int_{a}^{x} f(t) d t$,
Then $G^{\prime}(x)=f(x)$, on $[a, b]$

EX.2.3

For $G(x)=\int_{1}^{x}\left(t^{2}-2 t+3\right) d t$, compute $G^{\prime}(x)$
Solution Here, the integrand is $f(t)=t^{2}-2 t+3$
By Fundamental theorem part (II), The derivative is

$$
G^{\prime}(x)=f(x)=x^{2}-2 x+3
$$

That is, $G^{\prime}(x)$ is the function in the Integran
with t replaced by x.

Using the Chain Rule and Theorem 2.2 , we get the general form :

THEOREM.2.3 (An Integral with variable upper and lower limits)
(i) If $G(x)=\int_{a}^{u(x)} f(t) d t$, then $G^{\prime}(x)=f(u(x)) \cdot u^{\prime}(x)$ or $\quad \frac{d}{d x} \int_{a}^{u(x)} f(t) d t=f(u(x)) \cdot u^{\prime}(x)$
(ii) $\frac{d}{d x} \int_{v(x)}^{u(x)} f(t) d t=f(u(x)) \cdot u^{\prime}(x)-f(v(x)) \cdot v^{\prime}(x)$

EX.2.4

If $G(x)=\int_{2}^{x^{2}} \cos t d t$, compute $G^{\prime}(x)$
Solution Let $u(x)=x^{2}$, so that

$$
G(x)=\int_{2}^{u(x)} \cos t d t
$$

using the form (i), we get

$$
\begin{aligned}
G^{\prime}(x) & =\cos (u(x)) \cdot \frac{d}{d x}(u(x)) \\
& =\cos \left(x^{2}\right) \cdot \frac{d}{d x}\left(x^{2}\right) \\
& =\cos \left(x^{2}\right) \cdot 2 x=2 x \cdot \cos x^{2}
\end{aligned}
$$

EX.2.5

If $F(x)=\int_{2 x}^{x^{2}} \sqrt{t^{2}+1} d t$, compute $F^{\prime}(x)$
Solution

$$
\begin{aligned}
F^{\prime}(x) & =\frac{d}{d x} \int_{2 x}^{x^{2}} \sqrt{t^{2}+1} d t \\
& =\sqrt{\left(x^{2}\right)^{2}+1} \frac{d}{d x}\left(x^{2}\right)-\sqrt{(2 x)^{2}+1} \frac{d}{d x}(2 x) \\
& =\sqrt{x^{4}+1} \cdot 2 x-\sqrt{4 x^{2}+1} .2 \\
& =2 x \sqrt{x^{4}+1}-2 \sqrt{4 x^{2}+1}
\end{aligned}
$$

EX.2.6 (Computing the distance fallen by an object)
Suppose the (downward) velocity of a skydiver is given by $v(t)=30\left(1-e^{-t}\right) \quad \mathrm{ft} / \mathrm{s}$ for the first 5 seconds of a jump. Compute the distance fallen.

Solution Recall that the distance \boldsymbol{d} is given by the definite integral (corresponding to area under the curve)

$$
\begin{aligned}
d & =\int_{0}^{5} v(t) d t \\
d & \left.=\int_{0}^{5}\left(30-30 e^{-t}\right) d t=\left(30 t+30 e^{-t}\right)\right]_{0}^{5} \\
& =\left(150+30 e^{-5}\right)-\left(0+30 e^{0}\right) \\
& =\left(150+30 e^{-5}\right)-30=120+30 e^{-5} \approx 120.2 \text { feet }
\end{aligned}
$$

EX.2.7 (Rate of change and total change of volume of a tank)
Suppose the water can flow in and out of a storage Tank. The net rate of change (that is, the rate in minus the rate out) of water is $f(t)=20\left(t^{2}-1\right)$ gallons per minute.
(a) For $0 \leq t \leq 3$, determine when the water level is increasing and when the water level is decreasing.
(b) If the tank has 200 gallons of water at time $t=0$, determine how many gallons are in the tank at time $t=3$.

Solution Let $w(t)$ be the number of gallons in the tank at time t.
(a) Notice that the water level decreases if $w^{\prime}(t)=f(t)<0$ we have

$$
f(t)=20\left(t^{2}-1\right)<0 \text { if } 0 \leq t<1
$$

Alternatively, the water level increases if $w^{\prime}(t)=f(t)>0$ In this case, we have

$$
f(t)=20\left(t^{2}-1\right)>0 \text { if } 1<t \leq 3
$$

Diagram of sign $t^{2}-1=(t-1)(t+1)$					
sign of $(\mathrm{t}+1)$	-	-	-	-	
sign of $(\mathrm{t}-1)$	-	-	-	-	-
sign of $\left(t^{2}-1\right)$	-	-	-	-	
Since $t \geq 0$ then		-	-		
sign of $f(t)$		0	1		

(b) we start with $w^{\prime}(t)=20\left(t^{2}-1\right)$.

Integrating from $t=0$ to $t=3$, we have

$$
\int_{0}^{3} w^{\prime}(t) d t=\int_{0}^{3} 20\left(t^{2}-1\right) d t
$$

Evaluating the integral on both sides yields

$$
\left.w(3)-w(0)=20\left(\frac{t^{3}}{3}-t\right)\right]_{t}^{t}=3
$$

Since $w(0)=200$, we have

$$
w(3)-200=20(9-3)=120
$$

and hence

$$
w(3)=120+200=320
$$

so that the tank will have 320 gallons at time $t=3$

EX.2.8 (Finding a tangent line for a function defined as an Integral) For $F(x)=\int_{4}^{x^{2}} \ln \left(t^{3}+4\right) d t$, find an equation of the tangent line at $x=2$.

Solution Recall that the equation of the tangent line to $y=F(x)$ at $x=a$ is

$$
y-F(a)=F^{\prime}(a)(x-a)
$$

From THEOREM.2.3, we have

$$
F^{\prime}(x)=\ln \left[\left(x^{2}\right)^{3}+4\right] \frac{d}{d x}\left(x^{2}\right)=\left[\ln \left(x^{6}+4\right)\right](2 x) .
$$

so, the slope at $\mathrm{x}=2$ is

$$
F^{\prime}(2)=(\ln 68)(4) \approx 16.878
$$

But $\quad F(2)=\int_{4}^{4} \ln \left(t^{3}+4\right) d t=0$ (since the upper limit equals the lower limit)

An equation of the tangent line to $y=F(x)$ at $x=2$ is

$$
\begin{aligned}
y-F(2) & =F^{\prime}(2) \cdot(x-2) \\
y-0 & =16.878(x-2) \\
y & =4 \ln 6.8(x-2)
\end{aligned}
$$

Exercises

1. Compute the following Integrals

- $I_{1}=\int_{1}^{2}\left(4 x^{3}-2 x\right) d x$
- $I_{2}=\int_{0}^{\frac{\pi}{6}} \sin 3 x d x$
- $I_{3}=\int_{1}^{2} \frac{3}{2} \sqrt{x} d x$

2. Compute the derivative of the following functions

- $G_{1}(x)=\int_{5}^{1+2 x^{2}} \frac{t^{4}}{\sqrt{1+t^{2}}} d t$
- $G_{2}(x)=\int_{\sqrt{x}}^{1}\left|\sin \left(1+t^{3}\right)\right| d t$
- $G_{3}(x)=\int_{\sin x}^{\cos x} u \sqrt{1+u^{4}} d u$ at $x=\frac{\pi}{4}$

Recall the conclusion of part (I) and part (II) of the fundamental theorem:

$$
\begin{array}{rlrl}
& & \int_{a}^{b} F^{\prime}(x) d x & =F(b)-F(a) \\
\text { and } & \frac{d}{d x} \int_{a}^{x} f(t) d t & =f(x)
\end{array}
$$

